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ABSTRACT 

Repopulation and Stimulation of Porcine Cardiac Extracellular 
Matrix to Create Engineered Heart Patches 

Silvia Juliana Moncada Diaz 
Department of Chemical Engineering, BYU 

Master of Science 

Heart failure is the main cause of death for both men and women in the United States. The only 
proven treatment for patients with heart failure is heart transplantation. The goal of this research 
is to create patches of tissue that could mimic the function of the native heart to repair the 
damaged portions of the heart. In this study, whole porcine hearts were decellularized to create a 
3D construct that was recellularized with cardiomyocytes (CM) differentiated from human 
induced pluripotent stem (IPS) cells. At day 4 of differentiation, IPS-derived CMs were 
implanted onto cardiac extracellular matrix (cECM) and ten days after recellularization, the cells 
started to beat spontaneously. After implantation, the progenitor CMs continued to proliferate 
and populate the cECM. A live/dead assay showed the potential of the cECM as a scaffold 
suitable for recellularization. Confocal microscopy images were taken to evaluate the 
organization of the cells within the matrix and the impact of the cECM on the growth and 
maturation of the CMs. Representative cardiac Troponin T (cTNT) and vimentin 
immunostaining images of CMs derived from iPSCs, on cECM and on standard cell culture 
plates showed that the cECM allowed the cells to organize and form fibrils with the fibroblasts, 
compared with CMs cultured in regular culture plates. The timeline of implantation of the cells 
was a key factor for the development of the heart tissue constructs. Progenitor CMs seeded onto 
cECM showed better organization and the ability to penetrate 96 µm deep within the collagen 
fibers and align to them. However, mature CMs seeded onto the matrix showed a disorganized 
network with very reduced interaction of CMs with fibroblasts, forming two different layers of 
cells; CMs on top of fibroblasts. In addition, the depth of penetration of the mature CMs within 
the matrix was only 20 µm. To evaluate the impact of the addition of support cells to the CM 
monolayer cultures, CMs were co-cultured with human umbilical vein endothelial cells 
(HUVEC) and it was demonstrated that at ratios of 2:1 HUVEC:CM the beating rate of the CMs 
was improved from 20 to 112 bpm, additionally, the CM monolayer cultures showed a more 
synchronized beating pace after the addition of HUVECs. Pharmacological stimulation was 
performed on CM monolayer cultures using norepinephrine as a stimulator and the results 
showed that the beating pace of the CMs was improved to 116 bpm after 5 minutes of drug 
exposure. For future studies, inosculation of the tissue constructs could be performed with the 
incorporation of membrane proteins to understand the mechanotransduction of the cells. As a 
preliminary study, the action of dual claudins was evaluated with HUVEC cultures and the 
results showed the potential of these membrane proteins in the healing of the damaged cell 
membrane.  

Keywords: heart, decellularization, recellularization, cardiac extracellular matrix, induced 
pluripotent stem cells, differentiation, cardiomyocytes, human umbilical vein endothelial cells, 
stimulation, norepinephrine. 
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1. Introduction 

Heart failure, a disabling and frequently fatal disease, is the main cause of death for both 

men and women in the United States. Approximately 18 patients die each day because of this 

pathology while waiting for a transplant, and more than 5 million individuals currently suffer 

from heart failure. The treatment of heart disease requires a novel therapeutic strategy to reduce 

mortality and improve the quality of life for heart patients. 

 Heart disease often results in myocardial infarction. This occurs when blood flow stops to 

a part of the heart and the muscle does not receive a supply of nutrients and oxygen, causing 

irreversible cell damage. Several attempts have been made to mimic the environment and 

function of the native human heart to treat heart diseases. The functional contractile cells that 

populate the heart muscle have very limited capacity for regeneration after birth, and therapies 

for myocardium regeneration following heart disease and failure are in urgent need. Around one 

billion cardiac cells are lost after a heart attack, diminishing the pumping function of the heart 

[1]. The only proven treatment for patients whose cell damage progresses to heart failure is heart 

transplantation.  However, the demand for donor hearts suitable for transplant is much higher 

than the supply, creating long waiting lists and leading to patient death in most cases. In addition 

to the lack of donor organs, the immune response after transplantation represents another 

problem, and in some cases the complete rejection of the new organ is possible. 
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Heart tissue engineering is an alternative that holds great promise for those treatments 

based on the reconstruction of patient-specific cardiac muscle. Tissue engineering techniques 

based on using a patients’ own cells could resolve the immune response problem because the 

non-immunogenicity of autologous tissues reduces the likelihood of rejection by the recipient’s 

body after transplantation.  Regenerative medicine has appeared as a potential alternative to heart 

transplants for heart disease patients [2], with the implementation of scaffolds from biomaterials 

that can support and create an environment for the heart cells to grow and develop similarly as in 

the native human heart. Decellularized scaffolds provide a natural environment, free of 

immunogenic factors because of the absence of DNA, and preservation of the heart native 

structure which is suitable for cell culture and proliferation [3] could be a potential solution to 

treat heart diseases. 

Repopulation of heart tissue has been studied for several years.  Induced pluripotent stem 

(IPS) cells have unique characteristics such as capacity of proliferating indefinitely and the 

potential of differentiating into several type of cells. Cardiomyocytes (CMs) are the cells that 

perform the beating function in the heart. They can be derived from IPS cells following specific 

cell differentiation protocols with the same potential as the CMs found in the native human heart 

[4]. Various studies have demonstrated complete differentiation of IPS cells into cardiomyocytes 

that express the cardiac phenotype as earlier as day 4 post-differentiation and develop the beating 

function similarly as in the human heart [5], and further implantation in heart tissue could be 

possible. Some studies have shown that CMs can be implanted in cardiac tissue patches created 

from decellularized rat and pig hearts to improve differentiation of the cells [6]. However, the 

CMs obtained from these differentiation protocols are not completely mature and show immature 

characteristics in morphology, cytoskeletal proteins, and ion channel expression and organization 
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[7]. The lack of these characteristics leads to a desynchronized beating function, and it is an issue 

that must be overcome. 

In addition, along with CMs, several types of cells are found in the human myocardium. 

These cells include human cardiac fibroblasts, smooth muscle cells, and endothelial cells among 

others provide support to the CMs. Some studies have proven that coculture of CMs with these 

support cells improve engraftment and functional characteristics in in vitro and in vivo models 

compared to monolayers of CMs alone [8]. The endothelial cells have a leading role in the 

human organism as the promoters of angiogenesis and vascularization. [9]. The portion of the 

heart that is affected after a heart attack usually forms a scar and the pumping function of the 

heart is decreased severely. Endothelial cells have been studied and several publications have 

demonstrated the healing potential of, and the promotion of angiogenesis by HUVECs in diverse 

types of damaged tissue. These cells secrete specific growth factors to promote cell proliferation 

and vascular development to help reinstate reendothelialization of different tissues of the heart 

that are lost after infarction. The survival of CMs and their contractility depend on appropriate 

blood supply. In the mature myocardium, each CM is in physical contact with at least one 

capillary blood vessel [10]. The addition of supporting cells, such as HUVECs, has proven to 

have an influence on the improvement of the contractility rate of the CMs, as well as, on the 

synchronization of the pace of the CMs. 

One of the biggest challenges in the recellularization of decellularized pig hearts is to get 

the cells to beat at synchronized rates similar to the human heart. To accomplish this goal, 

mechanical, electrical and pharmacological stimulation of the cells can be performed. In the 

human heart, the cells responsible for adapting and adjusting the beating rate of the contractions 

are located in the sinoatrial node and are called pacemaker cells. These cells are able to set up 
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and maintain the pace of the entire heart muscle preventing arrythmias or other beating disorders, 

allowing the blood to be pumped correctly to the rest of the body. Since the movements of the 

cardiac muscle are involuntary, they are controlled by the sympathetic branch of the nervous 

system. The membrane of the cardiac cells has G protein coupled receptors, specifically β-

adrenergic receptors responsible for the excitatory response to specific neurotransmitters such as 

norepinephrine, which predominates in the sympathetic pathways that control the cardiac muscle 

contractions. The alteration of the release of norepinephrine helps to set the pace and the force of 

the cardiomyocyte contraction in response to different events such as exercise or fear. The 

implementation of pharmacological stimulation in vitro using drugs such as norepinephrine 

could provide a solution to obtain more mature and synchronized CMs that could potentially be 

used to populate decellularized scaffolds such as porcine cECM.  

This approach, along with the addition of support cells to the in vitro CMs cultures, could 

be implemented in the creation of an engineered heart to enhance the function of the beating 

heart tissue and provide a step further in the discovery of a regenerative therapy that can improve 

and enhance the life of heart patients. 
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2. Literature Review 

2.1 Whole Heart Decellularization 

Biologic scaffold materials composed of extracellular matrix (ECM) are typically 

obtained in a process that involves decellularization of tissues and organs. Different protocols 

have demonstrated the ability to completely decellularize tissues or organs by using physical, 

chemical or enzymatic agents to lyse cells and remove them from the tissue [11]. Removing 

cellular remnants may prevent an immune response while preserving the underlying structure 

[12,13].  Preliminary studies have shown the feasibility of creating complete decellularized rat 

hearts to be used as scaffolds to support and promote cardiac cells [14].  

Porcine hearts are similar to human hearts in terms of anatomy, size and protein 

expression, and they can provide an ideal scaffold for engineering human-size hearts. The ECM 

is a three-dimensional meshwork of proteins and polysaccharides that imparts structure and 

mechanical stability to tissues.  It is composed of a set of 367 proteins that represent the core 

components, and mediate a map for physical interactions [15]. It has been demonstrated that 

cardiac extracellular matrix (cECM) scaffolds derived from decellularized pig hearts can support 

the attachment and growth of human endothelial cells and fibroblasts [3].  

In order to obtain a cECM that can complete this function, DNA must be almost 

completely removed from the matrix to ensure a non-immunogenic response [16]. In addition to 

this, ECM components such as collagen and GAGs must remain in the matrix to provide support 
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for the attachment of cardiac cells. Cytotoxicity tests must be completed to ensure blood 

compatibility of the decellularized heart tissue. There are different assays based on human blood 

hemolysis that have been developed to measure the remaining cytotoxicity of the cECM. 

The chemicals used to decellularize a tissue can have different effects on the tissue 

ultrastructure, mechanical behavior and biochemical composition, and may affect the host 

response [17]. Thus, it is important to remove the residual chemicals after the decellularization 

process to reduce the possibility of producing a cytotoxic cECM. Momtahan et al (2016) 

developed a method to examine the cytotoxicity of acellular cECM. The hemolysis assay used in 

their study directly measured the cell death caused by the detergents used in the decellularization 

process. The study showed that detergents such as Triton-X and SDS, which are commonly used 

in decellularization protocols, need to be removed to obtain a non-cytotoxic cECM that can be 

viable for implantation. The hemolysis assay is a method that can be used to examine the 

cytotoxicity of a tissue or scaffold due to residual detergents.  

 

2.2 Cell Culture, Differentiation and Recellularization 

2.2.1 Cardiomyocyte Differentiation from IPS Cells 

Human embryonic stem cells have the potential to differentiate into all of the cell types of 

the body and may be useful as a source of cells for transplantation or tissue engineering [18]; 

however, their use is often perceived as unethical. Cardiomyocytes can also be created from the 

differentiation of IPS cells that are created from an adult patient’s own cells – an ethical source 

of cells. However, current cardiac differentiation protocols exhibit variable success across 

different IPS lines. These protocols usually use a cECM in combination with growth factors to 

promote cardiogenesis [5]. It has been proven that dynamic cECM promotes epithelial-
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mesenchymal transition of human IPS cells and complemented growth factor signaling to enable 

robust cardiac differentiation [19]. Lu et al (2013) reported that multipotential cardiovascular 

progenitor cells migrate, proliferate, and differentiate into cardiomyocytes after 20 days of 

perfusion into cECM. They showed that cECM promoted cardiomyocyte proliferation, 

differentiation, and myofilament formation from the repopulated human multipotential 

cardiovascular progenitor cells [6].  

Burridge et al (2014) reported complete differentiation of IPS cells into cardiomyocytes. 

The protocol (CDM3) they used to differentiate the cells consisted of three components: basal 

medium (RPMI 1640), L-ascorbic acid 2-phosphate, and rice-derived recombinant human 

albumin. Cardiomyocytes produced under their protocol were positive for cardiac markers 

troponin T-positive (TNNT2) and α-actinin. Contraction of the CMs began at days 7-9 of culture 

and minimal cell death was observed. The characterization of differentiated CMs showed that at 

days 15-20 the cells had an atrial-like action potential, and at days 30-35 of culture CMs 

demonstrated the phenotype of ventricular-like cells. Although this protocol produces immature 

CMs, the cells progressed from an unspecified cardiomyocyte precursor phenotype to a 

predominantly ventricular phenotype.  

CMs obtained from differentiation protocols are usually in an immature stage and cannot 

carry the beating function as well as mature CMs do in the adult heart. Mature CMs may better 

reflect the physiology of the adult heart and therefore be more useful in disease modeling. There 

are several ways to promote the maturation of CMs derived from IPS cells [20]. Yang et al 

(2014) demonstrated that after applying electrical stimulation and mechanical loading on the 

intermediate CMs, the cells displayed higher conduction velocity, contraction force and 

increased calcium transient kinetics. In addition to these stimulation methods, pharmaceutical 
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stimulation could be considered to improve the synchronized beating function. Altogether, these 

development characteristics can enhance the beating function of the CMs in the cECM. 

 

2.2.2 Coculture of Cells 

In the native human heart, the CMs contribute to the beating function, but the cardiac 

muscle needs other support cells to achieve the correct function of the heart. There are several 

types of cells that contribute to the overall beating function, such as endothelial cells, cardiac 

fibroblasts, and smooth muscle cells.  Several authors have demonstrated that the behavior of the 

CMs is influenced by the presence of these support cells. For example, Polonchuk et al (2017) 

showed that the ratio of coculture of different populations of support cells, specifically 

endothelial cells and cardiac fibroblasts is critical to successfully model the behavior of the 

human heart [8]. Adult CMs comprise 30% of the total cell population in the native human heart, 

while endothelial cells represent 10%, and cardiac fibroblasts the remaining 60%. The authors 

showed that primary CMs do not survive in culture for extended periods without supporting 

cells. Endothelial cells play a role in forming the vasculature of the heart, while cardiac 

fibroblasts appear to play a supportive role for the vascular network formation.  

 

2.2.3 Human Umbilical Vein Endothelial Cells (HUVECS) for Recellularization of 

Cardiac ECM 

The main goal for all processes involving heart tissue engineering is to be able to create 

an organ that can be transplanted into patients with heart failure. To do this, the engineered heart 

must have the same behavior and functionality as a native human heart. To accomplish that, in 
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addition to the differentiation and repopulation of cECM with cardiomyocytes derived from IPS 

cells, the use of HUVECs could help to achieve this goal. It has been reported that HUVECs 

express brain derived neurotrophic factor (BDNF) as well as other growth factors that enable 

axonal growth in skeletal muscle [21].  

Another growth factor, vascular endothelial growth factor (VEGF), which is also 

expressed by HUVECs, promotes angiogenesis in damaged tissues and facilitates the crosstalk 

between neural and vascular systems [22,23]. This communication between the neural and 

vascular systems may allow the heart tissue to function as well as a native heart, and could 

further contribute to the creation of a transplantable heart from decellularized pig hearts. Other 

studies have demonstrated the role of HUVECs in the reendothelialization of different tissues of 

the body to promote cell proliferation and vascular development [24,25,26]. 

Shvartsman et al. (2014) reported that VEGF, in addition to other growth factors, 

promotes the innervation of skeletal muscles after ischemic injuries. VEGF has been identified as 

a potential component that aims at restoring neural functions in damaged tissues. In addition, 

nerve growth factor (NGF) and glial-derived neurotrophic factor (GDNF) have roles in blood 

vessel growth and maturation in skeletal muscles. In this study, researchers demonstrated that 

HUVECs secrete NGF, GDNF, and VEGF, which are essential in the revascularization of injured 

tissue. These growth factors also promote axonal growth in tissues and help to maintain the 

crosstalk between the neuromuscular and the vascular systems.  

Even though the biotechnology that uses HUVECs as precursors of vascularization 

processes in tissues hasn’t been studied in heart tissue, the research that has been done in other 

types of tissue from the human body could help to develop a similar technology that can be 

applied in engineered hearts.  
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2.2.3.1 HUVECS Culture 

Several methods have been reported to cultivate HUVECs and promote angiogenesis in 

damaged tissue [27]. Hadjizadeh et al (2017) reported successful angiogenesis using multilayer 

surface-modified polymer fibers, and two different methods of cell seeding by HUVECs. They 

proposed a protocol for culture of the HUVECs. The cell culture protocol consisted of culture 

medium (M199) containing sodium bicarbonate (2.2mg/mL), sodium heparin (90µg/mL), 

penicillin/streptomycin (100 U/100µg/mL), 10% fetal bovine serum (FBS), L-glutamine (2mM), 

and endothelial cell growth supplement (ECGS). The cells were kept in an incubator at 37°C and 

5% CO2. In addition, they studied two different methods of cell seeding by HUVECs: In the first 

one, HUVECs, fibrin gel matrix and fibers were combined simultaneously. They found that by 

using this method, angiogenesis did not occur after 10 days of culture period. In the second 

method, the HUVECs were seeded in a sandwich between two layers of fibrin gel matrix with or 

without fibroblast cell monolayer over the fibrin gel. The study showed micro-vessel formation 

after day 5 of the culture period and concluded that the presence of fibroblasts facilitated the 

endothelial progression.  

Sanchez-Muñoz et al (2015) studied the angiogenesis of skin using HUVECs and human 

adipose mesenchymal stem cells (hADMSCs). The protocol that they proposed for the culture of 

HUVECs consisted of M199 medium, and supplements composed of 10% FBS, 10 U/mL 

heparin, and 2.5 µg/mL endothelial cell growth factor (ECGF). The cells were kept in an 

incubator at 37°C and 5% CO2. The culture medium was changed 3 times a week and the cells 

were used at 3-4 passages. They proposed 3 different models for angiogenesis of the tissue. The 

first model contained hADMSCs, the second model contained HUVECs and the third model 

contained HUVECs and hADMSCs. All of the three models also contained fibroblasts and 
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keratinocytes, which express VEGF that aim in the angiogenesis. Researchers observed that 

capillary-like structures (small channels) were formed only in model 3, and the cells proliferated 

and adhered to the entire tissue layer. Several growth factor levels, including VEGF, hepatocyte 

growth factor (HGF), and platelet-derived growth factor-AB (PDGF-AB), increased by 3-, 4- 

and 3-fold, respectively, at day 15 of cell culture.  

 

2.3 Stimulation of Cardiac ECM 

Several approaches have been pursued to improve the beating function of the CMs 

implanted in heart tissue patches and accelerate their maturation. The different approaches to 

mature IPS-derived CMs implanted in cECM that can be considered are mechanical, electrical, 

and pharmacological stimulation. The combination of these types of stimulation in a 3D matrix 

has produced CMs that acquire a physiological cell hypertrophy, mature their contractile 

apparatus, and improve Ca2+ handling properties [28].   

 

2.3.1 Mechanical Stimulation  

The ultimate goal of tissue engineering is to be able to create implants similar to native 

tissue. It is essential to use physiological stimuli to improve the quality of the tissue constructs. 

Mechanical stimulation of cardiac tissue patches leads to a maturation of immature CMs 

differentiated from IPS cells. Mature CMs cultivated in vitro must exhibit similar functions to 

CMs in the adult myocardium. The cardiac environment is highly mechanically active with 

spontaneous contractions and stretching can be used to mimic these conditions in the heart tissue 

constructs [29]. It has been demonstrated that application of mechanical stretch improves 
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contractile function, alignment of CMs along the stretch axis, and gene expression of CM 

markers [30].  

Lux et al (2015) accomplished maturation of CMs implanted in tissue constructs by 

mechanically stretching the cECM during cultivation of CMs isolated from rat hearts. 

Mechanical stimulation was used to alter passive muscle loading.  It is commonly utilized to 

mimic the most important aspects of the way CMs work in the heart. In this study, researchers 

used a matrix consisting of a combination of the small intestine submucosa from pigs with 

preserved mesenteric arterial and venous pedicles – named Biological Vascularized Matrix 

(BioVam). They seeded the CMs isolated from rat hearts into the matrix and prepared it for 

mechanical stretch. The initial experiments were conducted at 2%, 5%, 10%, and 20% stretch to 

observe the impact of the mechanical stimuli on the contractile function of the matrix. They 

found that 2% stretch did not induce any changes in the contractile function while 10% and 20% 

stretch decreased the contractile function of the cardiac constructs. Thus, all experiments were 

conducted at 5% uniaxial cyclic stretch stimuli (2.2 mm) at 1 Hz for 48 hours starting at day 8 of 

culture. An analysis at the cellular level demonstrated a strong alignment of the cells parallel to 

the direction of applied mechanical stimulation which increased the contractile function in the 

cardiac constructs.  

 

2.3.2 Electrical Stimulation  

Cardiac function depends on the appropriate timing of contraction in the different regions 

of the heart. To maintain these functions, electrical activity in each region is adapted to its 

specialized function. In the adult human heart, CMs are classified as ventricular-, nodal-, and 

atria-like cells based on their action potentials. IPS-derived CMs from various protocols consist 
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of a mixture of the three different phenotypes with ventricular-like cells being the predominant 

class of CMs. As mentioned before, IPS-derived CMs produced in vitro exhibit an immature 

state and need to achieve maturation. Cell culture in combination with electrical stimulation 

could enhance the maturation and ameliorate the beating function of the CMs.  

Mature mammalian myocardium exhibits both a positive force-preload relationship and a 

positive force-frequency (FFR) relationship, which are important for the contractile performance 

of healthy myocardium. Heart failure occurs when both mechanisms are lost in combination with 

fundamental alterations in excitation-contraction coupling. Despite the evidence of organotypic 

structural and molecular maturation, cECM repopulated with CMs have not shown a positive 

FFR. The positive FFR is dependent on the maturity of the intracellular calcium stores, the 

sarcoplasmic reticulum, and T-tubulation. Heart muscle development and maturation in the 

human body depend on electro-mechanical inputs, so by supporting auxotonic contracting 

function through mechanical loads and electrically stimulating at frequencies observed in 

neonatal hearts, the beating rate of cECM seeded with CMs could be enhanced [31].  

Godier-Furnemont et al (2016) achieved maturation function of engineered heart muscle 

(EHM). They proposed a mechanism of maturation consisting of a combination of mechanical 

and electrical stimulation within the culture protocol. They constructed EHM from mixtures of 

collagen type I, Matrigel and neonatal rat heart cells. They stimulated the EHM with auxotonic 

contractions at frequencies between 2 and 6 Hz. EHM was stimulated first just with auxotonic 

contractions and at day 8 of culture, spontaneous beating frequencies of 1.23 Hz were observed. 

This proved that incorporation of mechanical stimulation in culture improves the beating 

function of the EHM. After day 8 of culture, electrical stimulation was incorporated. Frequencies 

of 2, 4 and 6 Hz were delivered to the EHM. After 5 days of electro-mechanical stimulation at 4 
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Hz, a marked drop in spontaneous beating frequency – an indicator of maturation was observed. 

This study also demonstrated a positive FFR in the EHM electro-mechanically stimulated at 4 

Hz, demonstrating that stimulation is crucial for functional maturation. CMs stimulated at 4 Hz 

also showed calcium transients similar to CMs derived from a 13-day old rat myocardium. The 

sarcoplasmic reticulum calcium storage and release capacity was enhanced in samples stimulated 

at 2 and 4 Hz, demonstrating maturation in myocardial function. 

 

2.3.3 Pharmacological Stimulation 

CMs derived from IPS cells have an enormous potential for therapeutic applications. 

However, their immature stage after differentiation restricts their potential. Various secretions in 

the human body (e.g. hormones) are essential for optimal heart growth and development. Some 

scientists have proven that hormones such as Tri-iodo-L-thyronine (T3) aid in the development 

of a healthy heart [32]. T3 is a hormone that represses expression of fetal genes in neonatal CMs 

to enhance normal cardiac maturation. Abnormally high T3 levels in humans can lead to various 

complications such as decreased cardiac output, growth restriction, neuropathologies and 

tachycardia.  

Yang et al (2014) showed how CMs treated with T3 increased their size, anisotropy and 

sarcomere length.  They also demonstrated that the cells had lower proliferative activity, higher 

contractile force generation, enhanced calcium handling properties and increased mitochondrial 

respiration capacity. Their results showed that the cells increased their size from 604 µm2 to 991 

µm2, demonstrating that CMs exhibited a more mature morphology when they were treated with 

T3. The importance of cell size is reflected in the impulse propagation, maximal rate of action 

potential depolarization and total contractile force. The researchers in this study also proved that 
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the contractile force was improved by treatment with T3. The twitch force increased from 7.5 

nN/cell to 12.3 nN/cell. CMs treated with T3 displayed shorter time to peak contraction and 

significantly decreased relaxation time. This study suggested that the hormone T3 promotes the 

maturation of CMs derived from IPS cells by the improvement of morphological and functional 

characteristics of CMs.  

Other molecules produced by the human body could contribute to the development of the 

morphological and functional characteristics of CMs derived from IPS cells [33]. 

Catecholamines, such as epinephrine and norepinephrine, are hormones produced by the medulla 

of the adrenal gland and they help in the activation of sympathetic responses in the human body, 

particularly inotropic and chronotropic responses. Those responses are involved in changes of 

beating rate by the heart. The β-receptors are responsible for the responses and the changes in 

cardiac frequency in the heart, particularly β1-receptors. Drugs that interact with these receptors 

are called β-blocking drugs, and aid in altering the beating cardiac function. Isoproterenol is an 

example of a β-blocker and is a potent vasodilator that, along with epinephrine and 

norepinephrine, can help modulate the beating heart.  

Fan et al (2016) demonstrated that CMs exposed to short periods of pharmacological 

stimuli with epinephrine or norepinephrine increased their contraction rate, reaching a maximum 

at 5 min, followed by a slow decline. In contrast, the exposure of CMs to the drugs for time 

periods of 60 minutes did not increase the contraction response. Their results indicate that 

continuous exposure of the cells to the stimulator caused functional desensitization of CMs and 

prevented the contraction rate to increase.  The exposure of the CMs to these stimulation drugs 

could enhance the contraction rate of the CMs; therefore, the potential of the cells to beat within 

the cECM could also improve. This specific type of stimulation in combination with other 
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stimulating mechanisms enhance the possibility to obtain patches of cECM that could mimic the 

function of the human heart. 

 

2.4 Summary 

There are many aims that must be achieved to obtain a scaffold that can function as the 

human heart does. First, the cECM obtained from the decellularization of whole animal hearts 

must meet specific characteristics. For example, DNA must be removed from the tissue to avoid 

host rejection. Also, the detergents used to ‘wash’ the heart must preserve the collagen 

meshwork to make a functional cECM. Whole decellularization of pig hearts has accomplished 

these characteristics [3]. 

Second, the cECM needs to be repopulated with CMs that can carry the beating function 

the same way CMs do in the human heart. Human CMs finish their proliferation process at 7 

months of age, so when myocardial infarction occurs, the cells in the heart are not able to heal 

and regenerate. Various protocols have been developed to completely differentiate IPS cells into 

CMs. However, most of the CMs obtained in these protocols produce immature CMs that cannot 

perform the beating function correctly, and desynchronized beating tissue patches are observed. 

Some authors have proposed alternative approaches to mature the CMs lines produced in 

differentiation protocols [20]. Mechanical loading and electrical stimulation have been proposed 

as pathways to produce mature CMs [20]. Pharmaceutical stimulation could also be considered 

as a method to mature CMs [33]. 

Lastly, rapid and sufficient blood perfusion is necessary for the integration and survival 

of in vitro bioengineered tissue constructs. This is also important when looking at the possibility 
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of implantation of tissue patches into a living organism or complete organ transplant. HUVECs 

have been demonstrated to be capable of secreting several growth factors that are essential in the 

angiogenesis or blood vessel formation of the tissues in the human body, as well as, provide 

support for the CMs in the heart muscle allowing them to perform their function better. These 

cells require special culture protocols that researchers have developed. The expression of these 

growth factors promotes angiogenesis in injured tissues that can also connect the vascular and 

nervous system providing the support necessary for the CMs to perform their function correctly. 
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3. Objective 

The objective was to define first the conditions for recellularization of decellularized 

porcine cECM scaffolds with CMs differentiated from human peripheral blood mononuclear 

cell-derived (PBMC) IPS cells to derive patches of functional heart tissue that mimic the native 

human heart. Second, the improvement of the beating function of the CM monolayers in 

coculture with HUVECs and pharmacological stimulation using adrenergic drugs. 

 

3.1 Tasks 

1. Demonstrate that the CMs express better attachment characteristics when seeded on 

cECM at the progenitor stage.  

a. Recellularization of tissue patches with progenitor and mature cardiomyocytes 

i. Culture of progenitor (day 4 post differentiation) and mature (day 15 post 

differentiation) stage CMs on cECM to evaluate the differences in 

attachment characteristics of the cells in both scenarios.  

2. Demonstrate that the beating function of the CM monolayers can be increased from 10 to 

70-120 beats per minute in a synchronized manner. 

a. Coculture of CMs with HUVECs 

i. Ratios of HUVECs and CMs of 1:1 and 2:1. 
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b. Pharmaceutical stimulation of the CMs 

i. Norepinephrine in concentrations of 10 and 20 µM in intervals of 10 

minutes. 

c. Mechanical stimulation prototype 

 

3.1.1 Rationale and Hypothesis  

In the native human heart, the CMs contribute to the beating function, but the cardiac 

muscle needs other support cells to achieve the correct function of the heart. Primary CMs do not 

survive in culture for extended periods without supporting cells. The addition of HUVECs to the 

cultures can improve the beating function of the CMs. The timeline for the recellularization of 

the tissue constructs with the cells is also an important factor in obtaining beating patches with 

improved functionality to be transplanted to a patient. Moreover, the exposure of the cells to 

drugs such as norepinephrine a known neurotransmitter that plays a significant role in the 

improvement of the heart rate, can also contribute to increase the synchronized beating function 

of the cells.  
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4. Recellularization of Cardiac Extracellular Matrix  

Several attempts have been made to create a regenerative therapy that could mimic the 

environment and function of the native human heart to treat heart failure diseases. Although the 

differentiation of IPS cells into CMs has been done for several years [2,3,14,31,34] with positive 

results regarding the beating function of the cells, the implementation of biomaterials such as 

decellularized scaffolds to create beating constructs must be done. In this study, the effectiveness 

of porcine cardiac extracellular matrix (cECM) as a supporting scaffold for cardiomyocytes 

(CMs) differentiated from human induced pluripotent stem cells (iPSCs) was demonstrated. 

Acellular cECM was produced in an automated, pressure-controlled whole heart 

decellularization apparatus [3] and human iPSCs generated from peripheral blood monocytes [4] 

were used for CM differentiation. Differentiated CMs on cECM exhibited improved phenotype 

maintenance, elongation, arrangement, and beating functions compared to CMs cultured in 

regular cell culture plates, and CMs seeded onto cECM 15 days after differentiation. 

 

4.1 Materials and Methods 

4.1.1 Decellularization of Porcine Hearts and Tissue Preparation  

 Whole porcine hearts from 6-month-old female Yorkshire Cross swine were harvested 

from a local abattoir following approved protocols for safety and animal care. In order to obtain 

acellular cECM, decellularization of hearts was achieved using an automated pressure-controlled 

apparatus, similarly to studies previously published by Momtahan et al [3]. Following 
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decellularization, the hearts were dissected to separate the left ventricle, and a cryostat machine 

(HM525 NX, Thermo Scientific®, Pittsburgh, PA) was used to obtain round slices (10 mm 

diameter, 300 µm thickness) of decellularized cardiac tissue. The samples were mounted on 10 

mm diameter glass coverslips (Agar Scientific, Stansted Essex, UK) and placed in a 48-well 

plate containing 1 ml of 70% Ethanol solution. The tissue samples were treated with 1 ml of 

antibiotic solution containing 100 U/mL penicillin, 100 µg/mL streptomycin, 25 µg/mL 

amphotericin B in 75% ethanol to prevent bacterial and fungal contamination. The plates were 

incubated at room temperature for 3 h in a rotary shaker, and each well was washed 3 times with 

1 mL sterile Dulbecco’s phosphate-buffered saline (DPBS, Gibco™). Thereafter, the tissue 

culture plates were centrifuged at 200 x g for 4 minutes to remove trapped bubbles, and 500 µL 

of Fetal Bovine Serum (FBS, Gibco™) were added to each well. The plates were stored at 4°C 

for up to two weeks. 

 

4.1.2 IPS Cell Culture and Cardiomyocyte Differentiation 

Human IPS cells reprogrammed from peripheral blood monocytes (PBMCs) 

cryopreserved at -190°C were obtained from the University of Utah Cardiovascular Research and 

Training Institute (CVRTI, Salt Lake City, UT). The cells were thawed and seeded in 6 well-

plates coated with a DPBS -Vitronectin (VTN-N, Gibco™) solution (5.5µl VTN-N per ml 

DPBS). Cell cultures were maintained with TeSR™-E8™ Medium (StemCell Technologies™) 

in an incubator (Panasonic® MCO-19M-UV) at 37°C, 5% CO2, and medium changes were 

performed daily.  Cell passage was performed at 90% confluency using StemPro® Accutase® 

(Gibco™) as a dissociation reagent to detach the cells from the plate, and the culture plates were 

incubated for 5-6 min. Cell suspensions were centrifuged at 800 RPMs for 5 minutes, and 1:4 
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dilutions were adjusted to reach confluency every 3-4 days. To improve cell survival and 

attachment, Rho-associated protein kinase (ROCK) inhibitor (RevitaCell™, Gibco™) was added 

to the cell suspensions for the first 24 h, at every passage and after thawing. 

Cardiomyocyte differentiation was performed once the IPS cells reached 90% 

confluency. TeSR™-E8™ Medium was replaced with Cardiomyocyte Differentiation Medium A 

(StemCell Technologies™) supplemented with Corning® Matrigel® (10µL/mL). On day 2, the 

medium was replaced with Cardiomyocyte Differentiation Medium B (StemCell 

Technologies™) and on days 4 and 6, the medium changes were performed with Cardiomyocyte 

Differentiation Medium C (StemCell Technologies™). At day 8, small areas of beating cells 

were visible, the medium was replaced with Cardiomyocyte Maintenance Medium (StemCell 

Technologies™) and renewed every 2 days.  

 

4.1.3 Recellularization of Decellularized Cardiac Extracellular Matrix 

On day 4 of differentiation, the healthiest CMs were dissociated from the culture plates 

using TrypLE™ Enzyme (Gibco®). One ml of enzyme was added to each well and aspirated 

immediately to assure just enough enzyme to be in contact with the cells. The cell cultures were 

incubated for 5 min at 37°C in 5% CO2. The cell monolayer was resuspended in Cardiomyocyte 

Differentiation Medium C supplemented with ROCK inhibitor (RevitaCell™, Gibco™). A cell 

counter was used to count the cells and the cell suspensions were diluted to 1x106 cells/ml. The 

tissue plates were incubated for 1 h at 37°C prior to seeding, and 1 ml of cell suspension was 

added to each well. Medium change was performed one day after the seeding to prevent the cells 

from becoming dependent on the ROCK inhibitor. Thereafter, the medium was changed every 

two days as directed by the manufacturer. To evaluate the survival of the cells on the matrix, a 
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live/dead assay (Biotium) was performed at days 7 and 20 post recellularization on tissue 

constructs following the protocol from the manufacturer. Depending on the cell line, the tissue 

constructs started to beat 10-15 days post-seeding and the beating function of the cells was 

visually controlled and quantified. To evaluate the impact of the cECM on the cells (maturation 

and organization) the CMs were also seeded onto the matrix following the same protocol at days 

10-15 post differentiation depending on the health of the cells.  

  

4.1.4 Histology and Immunofluorescence Imaging 

Recellularized ECM and 2D monolayer samples were washed with phosphate buffered 

saline (PBS, GibcoTM) and fixed with 4% paraformaldehyde at room temperature for 10 min (2D 

monolayers) or 60 min (cECM). Samples were further washed three times with PBS solution and 

permeabilized with a PBS solution containing 0.2% Triton® X-100 (Fisher Scientific) for 30 min 

(2D monolayers) or 60 min (ECM). Afterwards, samples were blocked for 60 min using a PBS 

solution containing 2% fetal bovine serum (FBS, Sigma Aldrich, St. Louis, MO). Samples were 

then incubated overnight at 4°C in a PBS solution containing 2% FBS, monoclonal anti-cardiac 

Troponin T (cTnT, RV-C2, 1:50, F5D; 1:50; Developmental Studies Hybridoma Bank, DSHB), 

and monoclonal anti-Vimentin (V6630, 1:200, Sigma Aldrich, St. Louis, MO). The following 

day, the samples were washed three times with PBS and incubated for 60 min with a goat anti-

mouse IgG2b Alexa Fluor® 647 (A21241, 1:500, Invitrogen Eugene, OR), and goat anti-mouse 

IgG1 Alexa Fluor® 488 (A21121, 1:500, Invitrogen Eugene, OR), diluted in a PBS solution 

containing 2% FBS. Following the three PBS washes, the samples were mounted using ProLong 

Gold Antifade Reagent (Invitrogen Eugene, OR). A two-track protocol was used to obtain 3D-

stacks using a Zeiss LSM 880 Airyscan confocal microscope (Carl Zeiss, Jena, Germany) 
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equipped with a 20x lens. Images were processed using Imaris software (v6.1.0, Bitplane AG, 

Zurich, Switzerland). 

 

4.2 Results 

4.2.1 Recellularization of Decellularized cECM 

At day 4 of differentiation, the progenitor CMs cell cultures were passaged onto cECM to 

continue and complete the differentiation process. The cells started to beat 15 days post seeding 

on the matrix, contrary to what regularly happens when the cells are differentiated in cell culture 

plates, in which they beat after 8-10 days of differentiation. A live/dead staining assay was 

performed 7 and 20 days post seeding (11 and 24 days post differentiation) to evaluate the 

cytotoxicity of the matrix, and the results are shown in Figure 1.  

 

 

 

 

 

Figure 1. Live/dead Assay performed on cECM populated with CMs at days (A) 7 post 
seeding and (B) 20 post seeding. Scale bars represent 100 µm. 

 

In a progenitor stage, CMs continued to proliferate up to day 15 post differentiation when 

they started to attain a more mature phenotype and stop proliferation. For the recellularization of 

the cECM, one million progenitor CMs were seeded onto matrix as previously described. Figure 
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1A shows the cells 7 days after seeding, at which point, CMs were in a progenitor stage and they 

continued to expand and populate the cECM. When the cells reached a more mature phenotype 

(after day 20 post seeding), they stopped growing and proliferating, nevertheless the cells had 

expanded creating a bigger and denser population within the cECM up to ~95% of its area (Fig. 

1B). The beating function was recorded for the samples and the cells registered a beating rate of 

13 bpm at day 7 post seeding and 44 beats per minute at day 20 post seeding. The live/dead assay 

showed the survival of the CMs on the tissue matrix after recellularization proving that the 

cECM provides a suitable environment for cell growth with no cytotoxic effects for the cells. 

Confocal microscopy images were taken to evaluate the organization of the cells within 

the matrix and the impact of the cECM on the growth and maturation of the CMs. Representative 

cTNT and vimentin immunostaining images of CMs derived from iPSCs, on cECM and on 

standard cell culture plates are shown in Figure 2. The cells showed improved arrangement and 

organization when differentiated onto cECM (Fig. 2A and 2B, white arrows) compared with 

CMs differentiated in regular cell culture plates (Figure 2C and 2D). Cardiomyocytes (TNNT2, 

red) differentiated on the porcine cECM oriented into longitudinal fibrils that interdigitated with 

longitudinal strands of fibroblasts (Vimentin, green) in the same direction of the collagen fibers 

of the cECM. By contrast, cardiomyocytes differentiated on standard cell culture plates 

associated into 2D clusters/monolayers of beating cells, without any specific orientation (Figure 

2 C, D). 
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Figure 2. Cardiomyocytes differentiated on decellularized porcine cECM formed 
longitudinally oriented fibrils. 3D reconstructed confocal images of cardiomyocytes 
differentiated on decellularized porcine cECM (A, B) and 2D monolayers differentiated on 
a standard cell culture plate (C, D); see Materials and Methods for details. Image in D is 
magnified region denoted by white box in C.  Confocal images were obtained using Zeiss 
LSM 880 Airyscan confocal microscope, 20X.  Scale bar represents 50 µm. 
 

 

To evaluate the impact of the cECM on the maturation and organization of the cells, the 

CMs were seeded onto the matrix as progenitors (4-5 days post differentiation) and as fully 

differentiated CMs (mature cells, 15 days post differentiation). Confocal microscopy images 

were taken and figures 3 and 4 show the results of the cultures for both scenarios.  
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Figure 3. 3D reconstructed confocal images of cardiomyocytes differentiated on 
decellularized porcine cECM show a better organization (A, B) when seeded as 
progenitors, compared with cardiomyocytes seeded on decellularized porcine cECM (C, D) 
as mature cells; see Materials and Methods for details. Confocal images were obtained 
using Zeiss LSM 880 Airyscan confocal microscope, 20X.  Scale bar represents 50 µm. 
 

 

When the CMs were seeded as progenitors, the organization of the cells (Fig 3A and 3B) 

was better. The cells interacted and formed a network with longitudinal strands of fibroblasts and 

appeared to intercalate with them. On the contrary, when the CMs were seeded as mature cells, 

they presented a different pattern than fibrils (Fig. 3C, and 3D); instead they formed clusters of 

cells on top of the fibroblasts, and no significant interaction was observed between the CMs (red) 

and the fibroblasts (green) compared to when progenitors CMs were seeded onto the cECM. The 
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pattern observed with seeded mature CMs was similar to the one observed when the CMs were 

differentiated and kept in regular culture well plates (Fig 2C and 2D).  

 
 Another factor that is important when comparing the behavior of the cells at different 

seeding timelines is the ability of the CMs to penetrate deep and between the collagen fibers of 

the cECM. To evaluate this issue the depth of penetration of the CMs in the cECM was measured 

on confocal microscopy images.   

 

 

 

  

 

 

 

 

 

 

 

Figure 4. 3D reconstructed confocal images of cardiomyocytes differentiated on 
decellularized porcine cECM showed a deeper penetration within the matrix (A) when 
seeded as progenitors, compared with cardiomyocytes seeded on decellularized porcine 
cECM (B and C) as mature cells; see Materials and Methods for details. Confocal images 
were obtained using Zeiss LSM 880 Airyscan confocal microscope, 20X.  Scale bar 
represents 50 µm (A) and 70 µm (B, C). 
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Progenitor CMs seeded onto the cECM were able to penetrate deeper within the matrix 

compared with mature CMs. The mechanism of migration of the cells is thought to be mostly by 

gravity following the tortuous path of the pores and gaps through the tissue construct. Progenitor 

CMs are single cells and this characteristic also gives them the facility to move through the 

collagen fibers of the matrix. Contrary, the fully differentiated CMs organize in clusters, 

connected to each other through transmembrane proteins and that hinders the ability of the cells 

to migrate within the collagen matrix. The penetration of the cells was measured in 3 different 

samples, 4 measurements in each one (n=12) for both the progenitor and mature CMs. The 

progenitor CMs were able to penetrate the matrix 96.39±8.34 µm (Fig 4A, white arrows), while 

the mature CMs were able to penetrate only 20.13±4.5 µm (Fig 4, C white arrows). In Figure 4C, 

there was a small portion of CMs (red) that penetrated deeper when seeded as mature CMs 

(yellow arrow); 56 µm; however, this was not significant when comparing that small portion 

with the overall penetration ability of the mature CMs. Comparing the thickness of the cECM 

which was 300 µm and the ability of the cells to penetrate the cECM in both scenarios, the 

progenitor cells penetrated 32.1±2.8% of the depth of the matrix while the mature cells were able 

to penetrate only 6.7±1.5%.  

 

4.3 Discussion  

The decellularized porcine cECM used as a scaffold for cardiac tissue regeneration is a 

promising biotechnology for the creation of recellularized beating tissue patches to treat heart 

failure disease. The initial experiment proved that the cECM is a suitable environment for cell 

growth and development. Following recellularization at early stages of differentiation, the CMS 

derived from human IPS cells continued to proliferate, populating the matrix up to 95% of its 
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area. The cells seeded onto the cECM were able to completely differentiate into fully mature 

CMs and were able to perform their beating function correctly. Cardiomyocytes registered a 

beating rate of 13 bpm at day 7 post seeding and 44 beats per minute at day 20 post seeding. The 

beating function of the cells diminished once they were seeded on tissue because they need time 

to adapt to the dense collagen environment and migrate through the collagen fibers. It is harder 

for the cells to acquire a good beating function rapidly, and that is the reason why they take 

longer to beat stronger when the tissue is recellularized.  

In addition to the survival and ability of the cells to grow and complete differentiation 

within the cECM, the alignment of the cells was better and similar to the native human heart 

when the cells completed the differentiation process on cECM as shown in figure 2A and 2B. 

Cardiomyocytes were able to interact with the fibroblast and form fibrils that are similar to those 

found in the human heart. In contrast, when the cells were grown and differentiated on regular 

culture plates (Fig 2C and 2D), they did not show an organized pattern in fibrils, nor interaction 

with the fibroblasts. Instead, they formed a disorganized network of 2D clusters or monolayer of 

beating cells without any specific orientation.  

Another important finding from this experiment was the impact of seeding time of the 

cells onto the matrix. When the CMs were seeded onto the matrix as progenitor CMs, as they 

grew and differentiated, they were able to organize in fibrils along with the fibroblasts. They 

showed a specific orientation and were able to contract the collagen fibers of the matrix while 

performing their beating function correctly. By contrast, the cells seeded as mature CMs were 

not able to organize in fibrils and interact with the fibroblast and the collagen fibers of the matrix 

as well as the progenitor CMs (Fig. 3A and 3B). Instead, they formed 3D clusters in a ball-shape 
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on top of the fibroblasts creating layers of cells without any significant interaction, with the CMs 

on top of the fibroblasts (Fig. 3C and 3D). 

Finally, the timeline of seeding also affected the ability of the CMs to burrow within the 

cECM. Progenitor CMs were able to complete their differentiation on the matrix and that gave 

them the ability to burrow deeper and organize themselves in a better orientation within the 

collagen fibers of the matrix. The cells were able to populate the 300 µm thick matrix down to 

96.39±9.34 µm of its depth when seeded as progenitors, while mature CMs were only able to 

penetrate the matrix 20.13±4.5 µm of its depth. No significant interaction was observed between 

the fibroblasts and the CMs; instead, the CMs formed a layer on top of the fibroblasts and more 

than half of the population of cells showed no interaction between them (Fig. 4D). The best 

approach was to allow the progenitor CMs induced from IPS cells to finish their differentiation 

process in the cECM. Since the cells as progenitors have the capacity to proliferate, it is not only 

possible for them to burrow within the collagen fibers of the cECM, but also to organize 

themselves and create better connections with the fibroblast cells in the vicinity.   
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5. Coculture of Cardiomyocytes and HUVECS 

In a human heart, the CMs provide the beating function of the organ; however, these cells 

need support from other type of cells such as endothelial cells to perform their function correctly. 

In this study, the improvement of the beating rate of CMs was demonstrated after the addition of 

HUVECs to the 2D monolayer CM cultures at different ratios. Additionally, CMs showed a more 

synchronized pace after the addition of the HUVECs to the CMs cultures.  The improvement of 

the function of the cells was done by analyzing videos, and the beating rate was improved when 

CMs were cocultured with HUVECs. 

 

5.1 Materials and Methods 

5.1.1 HUVECS Culture  

Human umbilical vein endothelial cells (HUVECs) were purchased from Cell 

Applications, Inc. (San Diego, CA). Cell culture and expansion was performed in T-75 flasks 

using Endothelial Growth Medium (Cell Applications Inc). The cells were thawed and 

resuspended in Endothelial Growth Medium (15 ml per flask) and incubated at 37°C in a 5% 

CO2 incubator. The medium was changed one day after seeding to remove traces of DMSO, and 

thereafter, fresh medium was added to the cell cultures every other day. Once the cell population 

reached ~60%, the medium was doubled, and when confluency reached ~90%, the cells were 

passaged using Trypsin/EDTA (Cell Applications Inc.) as a dissociation reagent following the 

protocol provided by the manufacturer. The cells were centrifuged at 220 x g for 5 minutes, 1:3 
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dilutions were adjusted to reach confluency every 4 days, and the medium change was performed 

every other day.  

 

5.1.2 Coculture of Cardiomyocytes and Human Umbilical Vein Endothelial Cells.  

On day 15 after differentiation started, HUVECs were added to the CM monolayer 

cultures in ratios of 2:1 and 1:1 HUVEC:CM which are similar to ratios in the native human 

heart [8,10], and the cardiomyocyte maintenance medium was supplemented with VascuLife® 

VEGF Endothelial Cell Culture Medium (LifeLine Cell Technology) at the same ratios 

(complete medium). The passage of the HUVECs from the T-75 flask to the tissue samples was 

performed following the protocol provided by the manufacturer. The cells were counted using a 

Mini Automated Cell Counter (MoxiTM, ORFLO Technologies®) and the dilutions were adjusted 

to reach the desired concentration. The cells were resuspended in complete medium and seeded 

onto the CM cultures. The medium was changed every other day and the beating function of the 

cells was visually observed every 24 hours. 

 

5.2 Results 

5.2.1 Coculture of Cardiomyocytes and HUVECS 

In the native human heart, there are several types of cells beside cardiomyocytes. 

Although the CMs are responsible for most of the beating function of the heart muscle, these 

other types of cells, known as support cells, play an important role in the correct function of the 

heart. Endothelial cells are one of those type of support cells, and in this study these cells were 

used to help improve the beating function of the tissue patches. For the first observation, the 
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coculture was performed in regular cell culture plates. HUVECs were added in a 2:1 

HUVEC:CM ratio 15 days post differentiation and the beating function was observed and 

recorded every 24 hours for 8 days. The beating function of the cells was improved by 59% just 

24 hours after the addition of HUVECs. However, after 72 hours of coculture, the beating 

function was further improved only by 5% compared with the beating pace registered after 24 h 

of treatment. Contrary to this, after 120 hours of coculture, the cells improved their beating rate 

up to 112 bpm (77% compared with pre-coculture samples). After 192 hours of coculture, the 

cells stopped beating but they remained attached to the plate. Figure 5 shows a diagram of the 

beating function of the cells. Black markers show the CMs beating rate at 0, 24, 72 and 120 

hours post coculture with HUVECs. The orange markers show the behavior of the cells and their 

beating rate 48, 96, 144 and 192 hours post coculture. 

 

 

Figure 5. Beating rate of CMs-HUVECs cocultured cells 2:1 ratio. Orange markers 
represent the behavior of the cells at feeding times, black markers represent the behavior 
of the cells between feeding times. 
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 The second observation was performed at culture ratios of 1:1 HUVEC:CM on culture 

plates containing CMs on day 15 post differentiation. The beating function of the cells was 

recorded every 24 h for 8 days and the results are shown in Figure 6.  

 

 

Figure 6. Beating rate of CMs-HUVECs cocultured cells 1:1 ratio. Orange markers 
represent the behavior of the cells at feeding times, black markers represent the behavior 
of the cells between feeding times. 
  

After 24 hours of the addition of the HUVECs to the CM culture, the beating rate was 

improved by 29%. The maximum pace (42 bpm) was found 72 hours after the HUVEC addition 

with an increment of 43% compared to pre-coculture samples. After 120 hours of HUVEC 

implantation, the beating rate recorded was similar to the maximum; however, after 120 h the 

pace started to decline, and the beating function diminished to 18 bpm by day 8.  
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5.3 Discussion 

For both observations with the two different ratios, it is interesting that when a medium 

change was performed, the beating rate of the cells declined (orange markers in Fig. 5 and 6). 

This decline in the pace of CMs is explained by the fact that the cells needed time to reabsorb 

nutrients from the fresh medium that was fed to them; therefore 24 hours after the medium 

change, once the cells assimilated the needed nutrients of the fresh medium, the beating function 

was improved again. It is important to highlight that the medium changes were performed 

outside of the incubator, thus the temperature of the cells changed, and that is another reason that 

may explain the behavior of the cells at those feeding times. 

The results were much better when the ratio of coculture was 2:1. The beating rate started 

to improve just after 24 h of coculture and the maximum observed at this condition was 112 

bpm. Additionally, the cells showed a more synchronized pace after the addition of the HUVECs 

to the culture. However, the cells cultured at 1:1 ratio showed a slower beating rate compared 

with the results obtained in the first observation. Even though the cells showed a similar trend, 

by beating faster 120 h after the implantation of the HUVECs, the difference between the pace of 

the cells cultured at 2:1 ratio compared with the cells cultured at 1:1 ratio at the same time was 

63%, suggesting that a 2:1 ratio of coculture is better for the CMs behavior and functionality.  

One of the major challenges with experiments done in vitro is to keep the cells beating 

for longer periods of time. CMs do not proliferate once they reach a mature phenotype. 

Therefore, they tend to stop their beating function and die due to the conditions of in vitro 

culture. For both observations, the cells slowed their beating function after 6 days of coculture 

and stopped beating completely by day 8 (23 days post differentiation). One of the biggest 

reasons for this was the limited oxygen and nutrient supply when the cells were cultured in vitro. 
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Even though endothelial cells are responsible for blood vessel formation, the lack of 

characteristics similar to the native human heart environment prevented the cells from 

performing their natural and normal function. Lastly, there are more types of cells present in the 

native human heart such as cardiac fibroblasts and smooth muscle cells; to obtain a construct that 

can better mimic the function of the native heart, all these cells must be added to the CM 

cultures.  
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6. Pharmacological Stimulation of 2D Monolayer CM Cultures 

When CMs are cultured in vitro, unsynchronized beating function is one of the major 

problems. The cells do not behave the same way that happens in the native heart, and this is one 

of the biggest challenges to overcome in order to create a regenerative therapy that could assist in 

the healing process of heart disease.  

Some studies have been published that demonstrated how the addition of norepinephrine 

to CMs leads to an improvement in the beating function, as well as in the contraction force of the 

cells [33]. In this experiment, the CMs cultured in monolayers were stimulated with 

norepinephrine at different concentrations. The cells were exposed to short periods of drug 

stimuli, and the results were recorded, showing that the beating function of the cells increased, 

compared to CMs without stimuli. 

 

6.1 Materials and Methods 

Cardiomyocytes were cultured as previously described in cell culture plates. At day 21 

post differentiation, when the cells attained a mature phenotype, pharmacological stimulation 

was performed. Cardiomyocytes were stimulated with a solution of norepinephrine (NE, Sigma 

Aldrich®) at two different concentrations (10 and 20 µM) to evaluate the impact of the drug on 

the cells. The stimulator medium was prepared by diluting the NE in Cardiomyocyte 

Maintenance Medium (StemCell Technologies™) at the desired concentrations. The cells were 
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beating weakly before stimulation was performed, and the rate was recorded before NE stimuli 

by placing the cells in the microscope and recording their contraction. The stimulation assay was 

performed following a protocol published by Fan et al [33]. Stimulator medium was added to the 

cells for 10 minutes and the contraction of the cells was recorded (first round). After that, fresh 

medium (without NE) was added to the cultures and the cells were observed for 60 minutes to 

evaluate the impact of the drugs in the cells. Following the 60-minute period without NE, 

stimulator medium was added again to the cells for 10 minutes (second round) and the 

contraction response of the cells was recorded again. Another observation was done by keeping 

the cells with stimulator medium for 60 minutes following the first period of stimulation, after 

which the contraction rates were recorded again for 10 minutes. 

 

6.2 Results 

The first observation was performed with cells cultured on regular culture plates (6 well-

plates) using a 10 µM stimulator medium. The pre-stimulation rate was recorded before the 

addition of the drugs and the cell beating rate was 38 bpm (Figure 7). The Stimulator medium 

was added to the cell cultures and the first observation was recorded 5 minutes after the addition 

of the drugs. The CMs expressed a beating rate of 114 bpm (Fig 7, red arrow), an increment of 

67% when compared with the beating rate of the cells before the stimulation. A second 

measurement was recorded 10 minutes after the addition of the NE and it showed a beating rate 

of 68 bpm. The beating function decreased by 40% compared with the measurement recorded 5 

minutes after the stimulator was added to the cells, but the pace was better when compared with 

the pre-stimulation rate. After the first round of stimulation, the medium was changed to remove 

the stimulator and the beating function was recorded twice: 10 and 20 minutes after the removal 
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of the stimulator. The first measurement showed 74 bpm and the second one 50 bpm. The 

beating rate decreased 56% when compared with the pace of the cells that were in contact with 

the stimulator for 5 minutes (114 bpm). After the stimulator was re-added to the cell cultures for 

an additional 10 minutes, the beating rate sped up again reaching a pace of 106 bpm (Fig 7, green 

arrow).  

 

 

 

 

 

 

 

Figure 7. Stimulation results with 10 µM (A) 10-min stimuli, (B) no stimuli for 60-min and 
(C) 10-min stimuli.  Red arrow shows bpm peak after first round of stimulus.  Green arrow 
shows bpm peak after second round of stimulus. Dotted line is plotted at the pre-
stimulation rate as a reference. 

 

 

The second observation was carried out similarly, but the cells were treated with 20 µM 

NE stimulator; additionally, the recordings were performed in shorter intervals, 3 times in each 

stimulation round (Figure 8). The CMs were beating at a pace of 26 bpm before the stimulation 

with NE was performed (pre-stimulation rate, dash line on Fig. 8). Once the stimulator medium 

was added to the cell cultures the contraction rate was recorded 5 minutes after the addition of 

the drugs in intervals of 2 or 3 minutes. The first recording showed an increase of 21% of the 

B. No NE for 
60-min A. NE for 10-min C. NE for 10-min 
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contraction rate of the cells, and the peak was found to be at 5 minutes (Fig 8, red arrow) of drug 

stimulation with an increment of 59% in comparison with the pre-stimulation rate. After the 10-

minute stimulation period, the stimulator medium was removed and changed for regular CM 

medium. The cells were placed back in the incubator and the contraction rate was recorded. The 

cells exhibited a contraction rate close to the pre-stimulation rate, with a change of only 7%. 

After the 60-minute period without stimuli, the cells were stimulated again with NE and the 

functional beating was recorded once again. CMs exhibited an increment in the contraction rate; 

this time with a peak at 80 minutes (Fig 8, green arrow). The change in the contraction rate was 

62% (69 bpm) compared to pre-stimulation rate (26 bpm).  

 

 

 

 

 

 

 

 

Figure 8. Stimulation results with 20 µM (A) 10-min stimuli, (B) no stimuli for 60-min and 
(C) 10-min stimuli. Red arrow shows bpm peak after first round of stimulus.  Green arrow 
shows bpm peak after second round of stimulus. Dotted line is plotted at the pre-
stimulation rate as a reference. 

 

B. No NE for 60-
min C. NE for 10-min A. NE for 10-min 
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6.3 Discussion  

Figure 9 shows the results for both pharmaceutical stimulation assays plotted together. 

  

 

 

 

 

 

Figure 9. Stimulation of CMs with NE. (A) 10-min period stimuli, (B) 60-min period 
without stimuli, and (C) 10-min period stimuli. Assay 1 was performed with stimulator 10 
µM NE and Assay 2 was performed with stimulator 20 µM NE. 

 

For the first assay during the first round of stimulation, the cells exhibited a better 

contraction rate when treated with 10 µM than cells treated with higher concentration of 

stimulator (20 µM, second assay). The highest pace recorded in the assay performed with 10 µM 

NE was 116 bpm, after 5 minutes of stimulation (Fig. 9A red arrow). When the stimulator was 

added after a 60-min period of non-stimuli, the increase in the CM beating rate was similar to the 

initial response (Fig. 9C red arrow). However, for the second assay the pace decreased compared 

with the results obtained from the first assay (Fig. 9A green arrow). The cells exhibited a slower 

beating rate, being 69 bpm, the highest pace achieved by the cells after the second round of 

stimulation (Fig. 9C green arrow). These results led to several observations. First, the 

concentration of the drugs creates a response from the cells. The cells exhibited improved 

contraction rates when the concentration of the stimulator medium was 10 µM as observed 

B. No NE for 
60-min C. NE for 10-min A. NE for 10-min 
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previously by Fan et al [33]. In contrast, the measurements made in both assays after 5 min of 

stimulation showed that the beating rate of the cells decreased by 45% (114 bpm, 5 min after 

stimulation with 10 µM NE versus 63 bpm, 5 min after stimulation with 20 µM NE) when the 

stimulator concentration was doubled during assay 2.  Second, we hypothesize that the 

temperature of the cells is an important variable that affects the beating function of the CMs. The 

temperature of the CMs in the human heart is 37°C; taking the culture plates out of the incubator 

several times may decrease the temperature of the cultures and therefore, their beating function. 

This hypothesis arose based on the results obtained from the first assay, when the cells were only 

taken outside of the incubator to record the beating rate twice instead of three times as done in 

the second assay. Third, for both assays, the 60-min period without stimuli showed a decrease in 

the beating function (Fig. 9 B), which was slower for assay 1 and faster for assay 2; but no 

improvement in the beating function was observed. The last observation suggests that the cells 

do need the stimuli of the drugs to improve the beating function. Norepinephrine is an antagonist 

released by the sympathetic system in the human body. This antagonist binds to the beta 

receptors (β2) located in the membrane of the cells and the response is to increase the beating 

function of the CMs when the pace slows down.  
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7. Inosculation of Engineered Heart Tissue 

The creation of heart tissue engineered constructs is only the beginning step in the 

development of a regenerative therapy to treat heart failure disease. The remaining challenge is 

the establishment of an efficient communication between the beating patch with the host and to 

maintain this connection to ensure the survival of the heart tissue constructs. This survival can be 

ensured by creating a vascularized tissue that can connect to the host. Vascularization may be 

achieved by the stimulation of angiogenesis or the inosculation of preformed microvascular 

networks within the implants to the host microvasculature [35]. See Figure 10. 

In all types of human tissues, the endothelial cells are responsible for the creation of the 

vasculature. These cells are connected to each other by tight junctions that enable the 

communication between cells. There are specific proteins that are part of the tight junctions 

known as Claudins which are located in the membrane of the cells. These proteins are the most 

important components of the tight junctions, and are responsible for the establishment of the 

paracellular barrier that controls the flow of molecules in the intercellular space between the cells 

of the epithelium [36]. Endothelial cells express claudins 1, 2, 3, 4, 7, 9 and 14. Most of the 

processes that occur inside a cell require energy, and the cells have three sources: chemical, 

electrical, and mechanical. Mechanical forces are translated into biochemical activity of the cell 

and involves the interaction of many structural components including the extracellular matrix, 

the cytoskeleton, the lipid bilayer, and the intracellular organelles [37]. 
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Figure 10. Angiogenesis (left) vs. Inosculation (right).  In angiogenesis, new blood vessels 
sprout and grow into the implant (gray).  During inosculation (circles), existing blood 
vessels (blue) connect to host blood vessels (red). 

 

Tight junctions and specifically, their membrane proteins known as claudins, are capable 

of interacting with all the mentioned cellular sites to transduce mechanical forces. Inosculation 

can improve the angiogenic host tissue response and accelerate the directed growth of 

microvessels from the host microvasculature towards the implants and potentially eliminate the 

rejection of the tissue constructs by the host.  

In this preliminary study, the potential that claudins have in healing the membrane of 

damaged HUVECs was demonstrated. Future studies are required to better understand the 

restoration of the mechanotransduction machinery through the introduction of soluble dual 
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surface chimeric claudins, as this restoration can be turned into advantages in the process of 

inosculation of tissues. 

In our initial experiment with endothelial cells, HUVECS (Cell Applications, Inc.) were 

cultured in T-75 flasks using Endothelial Cell Growth Medium (Cell Applications Inc). The cells 

were thawed, resuspended in Endothelial Growth Medium (15 ml per flask) and incubated at 

37°C in a 5% CO2 incubator. The medium was changed one day after seeding to remove traces 

of DMSO, and thereafter, fresh medium was added to the cell cultures every other day. Once the 

cell population reached ~90%, the cells were passaged using Trypsin/EDTA (Cell Applications 

Inc.) as a dissociation reagent following the protocol provided by the manufacturer.  The cells 

were passaged onto a 12-well plate and grew to confluency. The monolayer was wounded using 

a 200 µL pipette tip by applying just enough pressure to damage the monolayer but not scratch 

the surface of the well plate. Pictures were taken to identify the wound gap in each well using a 

light transmission microscope. For the positive test, the dual surface claudins (chCLDNs)[38] 

were added to the HUVEC medium at a concentration of 1 µM, and for a negative control, single 

surface claudins (chCLDNs with “one end”) were added to the HUVEC medium at the same 

concentration. One extra observation was performed only with HUVEC medium. The cells were 

incubated for 3h, 6h and 24h at 37°C in a 5% CO2 incubator, and pictures were taken at each 

interval of time at the same spot every time to evaluate the gap closure for each observation.  

 

Preliminary Results 

After the wound was made on the monolayers, pictures were taken using a light 

transmission microscope, and measurements of each gap (3 samples; 3 times each one) were 

recorded before the addition of the dual (test) and single (control) chCLDNS. Gap measurements 
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were made 3, 6, and 24 hours after the addition of the proteins to assess their effects on the 

closure of the wounded monolayers. 

 
Figure 11. Wound healing assay. (A), (E), (I) wounded HUVEC monolayer before addition 
of proteins, (B), (C), (D) cells treated with dual chCLDNS 3, 6 and 24 h after treatment, (F), 
(G), (H) cells treated with single chCLDNS 3, 6 and 24 h after treatment and (J), (K), (L) 
cells treated with HUVEC medium only. Scale bars represent 100 µm. 
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The results from this preliminary experiment indicated that there was an influence of the 

chimeric claudins on the membrane proteins of the cells. The images obtained 3h after the 

addition of the dual chCLDNS showed that the monolayer wound began to close when compared 

with the original gap length (Fig. 11B). The average length of the original wound was 554 µm 

and the length recorded 3h after the addition of the proteins was 445 µm. The wound closed 

about 23%±9% of its original length. After six hours of treatment the closure was 295 µm, 

48%±9% of the original gap length (Fig 11C). 

 

 

Figure 12. Dual surface claudins increase the gap closure rate in wounded cells in 
comparison with cells treated with single surface claudins and only cell culture medium. 

 
 
For the final stage of the experiment, the data were recorded 24 h after the addition of the 

proteins. For this stage of the experiment, both the gap on the positive control and on the samples 

treated with medium closed completely. However, in the negative control, the gap closure was 
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just 11% (Fig. 10H, Fig. 12) suggesting that the cells do need protein with both endings to be 

able to completely heal and close the wound. The samples treated with just regular cell medium 

closed completely after 24 h due to the natural proliferation function of the cells.  

 

Discussion 

It is important to understand how every tissue works in the human body. The heart 

muscle needs more than cardiomyocytes to perform its job. Trying to mimic the behavior of the 

heart muscle must include all the connections and the environment that the native human heart 

has. In addition to including support cells, the connections made by those cells need to be 

understood. For this preliminary experiment, the hypothesis is that the single surface claudins 

occupied sites on the membrane preventing the cell from reestablishing the connections with the 

cells in the vicinity, and that is why the gap on the negative controls did not close completely.  

Additionally, the cells treated with dual surface claudins were able to heal and completely 

close the wound, suggesting that claudins with both ends are necessary in the healing process of 

the membrane of the cells because they aid in reestablishing the communication with the cells in 

the vicinity. Comparing these observations with the results obtained when the wound was treated 

only with medium, the conclusion is that the cells closed the wound in the experiment including 

only medium because they proliferated and populated the space. Better observations must be 

done to understand the behavior of the cell membrane and the responses of the membrane 

proteins when the single surface claudins were added to the samples. The introduction of the 

inosculation concept in the research of regenerative therapies in the cardiovascular field could 

promise better and faster results in obtaining in vitro models that can be incorporated into in vivo 
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models to develop a therapy that can deliver better results in the treatment of heart failure 

disease. 
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8. Thesis Synopsis 

8.1 Conclusions 

Several concepts need to be considered when evaluating the possibility of creating a new 

regenerative therapy that can help patients suffering from heart failure disease. The heart is the 

main motor of the human body; it is responsible to deliver the blood that carries oxygen and vital 

nutrients for the correct function of every single tissue and cell that composes the human 

anatomy. The correct functioning of the heart is vital for correct function of the human body; 

therefore, the therapies targeted to aim in the healing of the damaged heart need to be very 

specific and almost perfect. This raises a lot of questions and leads to different scenarios of how 

regenerative medicine can be applied to help heart patients now and in the near future.  

In chapter 5, the viability of creating a beating tissue construct by recellularization of 

decellularized porcine cECM was demonstrated. For this study several conclusions were made. 

First, it was shown how the IPS cells-derived CMs were able to grow and complete the 

differentiation process to fully mature CMs on the decellularized porcine cECM. Additionally, 

the cECM was shown to be a scaffold suitable for cell development, growth and expansion, 

without any cytotoxic effects. The populated cECM continued to beat for up to 90 days, with 

beating rate up to 113 bpm, creating a heart tissue construct that could be incorporated as a 

regenerative therapy that could aim toward the healing of the damaged heart of patients suffering 

from heart failure disease. 
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Second, and one of the major findings in this study is that the cECM provided an 

exceptional environment for CM development, not only because it does not have any cytotoxic 

effect on the cells, but also because the CMs are able to organize in fibrils and create connections 

with the fibroblasts, setting-up an oriented network of fibroblasts and CMs similar what is 

observed in the native human heart.  

Third, the conditions of the implantation of the CMs onto the matrix have an important 

role in the creation of the beating tissue constructs. The cells were able to penetrate and create an 

organized network within the cECM when they finished the differentiation process in the matrix. 

The implantation was performed at day 4 of differentiation when the CMs were in a progenitor 

stage, meaning that they still had the ability to proliferate and organize themselves within the 

collagen fibers of the cECM. However, when the differentiation process was carried out in 

regular culture plates and the recellularization of the cECM was done with mature CMs, once the 

implantation occurred, the cells had lost the ability to proliferate.  In addition, their ability to 

burrow and interact with the collagen fibers of the matrix was decreased; thus, the CMs formed 

layers of cells on top of the cECM instead of burrowing deep inside the matrix. These layers did 

not interact with the fibroblasts as well as when the implantation was done with progenitor CMs, 

and that led to a non-oriented network of cells that affected the beating function of the CMs, 

leading to desynchronized beating patterns within the matrix, and therefore a defective beating 

tissue construct that would not be suitable for heart tissue regeneration.  

In chapter 6, the potential of the addition of support cells such as HUVECs to the 2D 

monolayer cultures to improve the beating function of the cells was demonstrated. In the native 

human heart, along with CMs, there are several types of cells such as endothelial cells and 

fibroblasts that are responsible for the correct functioning of the heart tissue. In this study, 
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HUVECs were added to the 2D monolayer culture of CMs to evaluate the impact of these cells 

in the CMs and their functioning, and several conclusions arose. First, the HUVECs added in 

correct ratios (2:1 HUVEC:CM) improved the beating function of the CM cultures. The beating 

rate recorded improved after 24 h of treatment by 59%, and after 120 h of coculture the cells 

expressed a beating pace of 112 bpm (77% improvement compared to cell culture with only 

CMs). However, when the coculture ratio was of 1:1 HUVEC:CM, the results were worse. The 

beating function improved only 41%, 42 bpm being the maximum pace.  

Second, it was observed that at feeding times, when the medium of the cell cultures was 

changed, the beating function diminished. Since these experiments were done in vitro, the 

beating function of the cells changed drastically and slowed down because the cells needed time 

to adapt to the fresh medium. The medium change was performed outside of the incubator, at 

room temperature and that influenced the beating rate of the cells, contrary to what happens in 

vivo, when the nutrients are delivered to the cells with no change in temperature. 

 Finally, the support cells (in this case the endothelial cells), along with the ratio of 

coculture play an important role in the correct functioning of the CMs, and it is reflected in their 

beating rate being the 2:1 ratio (HUVEC:CM coculture), a better approximation of the behavior 

of the cells in the native human heart. 

Another approach that is commonly used to speed up the pace of the cells and improve 

their beating rate is the addition of drugs in the culture medium. Cardiomyocytes have beta 

receptors (β2) located in their membrane. In the presence of antagonist drugs such as 

Norepinephrine, there is an improvement in the CM beating rate. In chapter 7, the impact of 

pharmacological stimulation performed on the CMs was shown. From this portion of the study, 

one can conclude that the CMs cultured in vitro need the action of the drugs on its membrane to 
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correctly perform their beating function. Norepinephrine, a neurotransmitter, is secreted by the 

adrenal glands and targets several tissues including the heart. In the native human heart, the 

sympathetic branch of the nervous system is responsible to adjustments in the beating pace of the 

heart by the action of norepinephrine; it increases the beating rate when needed to keep up the 

normal pace of the heart. 

Also, the amount of drug that the cells should be exposed to is limited to a concentration 

of 10 µM. When the cells were exposed to that concentration, the beating rate was improved 

from 30 bpm to 116 bpm after 5 minutes of drug stimulation. However, when the CMs were 

exposed to a higher concentration of drugs (20 µM) the beating rate was only improved to 69 

bpm. Even though the beating rate for the second observation falls into the regular beating rate of 

an adult human at rest, these observations were performed in vitro in regular culture plates, and a 

faster pace will be required when the cells are passaged onto the cECM due to the difficulties of 

the CMs to beat faster and stronger within the matrix.  

 

8.2 Recommendations for Future Work 

In chapter 7, the inosculation of the heart tissue constructs was proposed. The preliminary 

study done with HUVECs suggested the possibility of incorporating surface proteins found in the 

membrane of the cells. The experiment was performed with HUVECs because of the simplicity 

of the culture protocol, and the availability of the dual claudins at BYU. The endothelial cells 

used in this study belong to the family of cells that possess in their membrane this particular 

claudin protein. The presence of endothelial cells in the cardiac cultures is essential for the 

correct functionality of the CMs, being also an important consideration when creating the 3D 

cardiac tissue constructs using decellularized cECM for future studies. As endothelial cells play 
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an essential role in the angiogenesis of the tissues, vascularization may be achieved by the 

stimulation of angiogenesis or the inosculation of preformed microvascular networks within the 

implants to the host microvasculature, moving this tissue engineering technology one more step 

toward patient treatments.  

The mechanotransduction events that occur inside the cell remain unknown and the 

understanding of these processes could lead to new findings that can improve the creation of a 

more complete cardiac regenerative therapy. As endothelial cells have these proteins in their 

tight junctions, the CMs have proteins in their gap junctions known as connexins that allow the 

communication between cells and the transferring of the electrical impulses responsible for the 

creation of the contraction of the cells. Understanding the biology at the membrane of the cells 

could lead to more findings related to the limited capacity of the CMs to heal in the cardiac 

tissue.  

Mechanical stretching has been proven to be a useful resource to obtain contractile 

cardiac tissue patches with cell alignment similar to the organization in the human heart muscle. 

The incorporation of the preliminary mechanical prototype designed and assembled in the 

laboratory (Fig. 13) to stretch and stimulate the 3D beating tissue construct, is important to 

obtain a stronger and more mature beating patch that could mimic the function of the native 

human heart tissue.  

The recommendation is to mechanically stretch the tissue construct that has been 

populated not only with CMs but also with other support cells such as endothelial cells and 

cardiac fibroblasts. In addition, electrical stimulation must be included for future studies, since it 

has been proven that electrical stimuli result in the maturation of the CMs and in the alignment 

of them. Based on the literature, I propose a mechanical stimulation performed by cyclical 
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stretch of 5% to 8% for 48 hours and electrical stimulation with frequencies in the range of 1-

1.67 Hz. 

 

 

 

 

 

 

 

 

Figure 13. Mechanical Stretcher Prototype Built in Our Lab. 
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